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Abstract
As a convex approximation of the tensor multi-rank
which models low-rankness in the spectral domain,
the Tubal Nuclear Norm (TNN) has shown superi-
ority over traditional tensor nuclear norms in many
tensor recovery tasks. However, it over-penalizes
larger singular values of the Fourier block-diagonal
matrix and may result in biased estimation. To this
point, we define a non-convex l1 − αl2 metric to ap-
proximate tensor multi-rank and introduce it into a
new tensor sensing model with guaranteed recovery
performance. The proximal operator of the metric
is then proposed and utilized in an alternating direc-
tion method of multiplier (ADMM)-based algorithm
to solve the problem. Effectiveness of the proposed
metric is evaluated on both synthetic and real data.

1 Introduction
Tensor recovery from a few noisy linear measurements is an
active topic in machine learning and signal processing [Liu
et al., 2020]. It is ill-posed when information quantity of
the observations is lower than Degree of Freedom (DoF) of
the signal, so the underlying tensor is often assumed to be
low-rank to model a low DoF. Traditional low-rank tensor
models based on CP/Tucker decompositions have been well
studied. Recently, the tensor Singular Value Decomposition (t-
SVD) [Kilmer et al., 2013] based models have shown superior
performance over traditional models in many tensor recovery
tasks like image inpainting [Lu et al., 2018].

Tensor recovery based on t-SVD often assumes the under-
lying tensor L∗ ∈ Rd1×d2×d3 has low tubal rank r, leading to
a DoF at most r(d1 + d2 − r)d3 which is significantly smaller
than the entry number d1d2d3 [Lu et al., 2018]. It is proved
that by TNN minimization, O(r(d1 + d2 − r)d3) noiseless
Gaussian measurements are sufficient for exact recovery, and
O(rmax{d1, d2}d3 log2(d1d3 + d2d3)) observations sufficient
for exact tensor completion [Lu et al., 2018]. In the noisy
setting, one needs O(rmax{d1, d2}d3 log(d1d3 + d2d3)) obser-
vations for approximate tensor completion via an iterative sin-
gular tube thresholding algorithm (ISTT) [Wang et al., 2018].
The constrained [Lu et al., 2018] and regularized [Zhang et
al., 2020] TNN-based models have been proposed for stable
tensor compressive sensing with order-optimal sample size.

The above works are based on TNN which treats singular
values of the Fourier block-diagonal matrix equally to pur-
sue the convexity of the objective function. However, it may
sometimes yield sub-optimal performance due to the biased ap-
proximation to multi-rank in the sense that TNN is dominated
by singular values with large magnitudes, unlike multi-rank in
which all nonzero singular values have equal contributions.

To address this issue, we define a non-convex l1 − αl2 met-
ric as a tighter multi-rank approximator than the convex TNN
and propose a new estimator for tensor recovery in §3. Statisti-
cally, an upper bound on the estimation error is established in
§4. Algorithmically, by deriving an analytical solution to the
proximal operator of the metric in §5, simple ADMM can be
used to compute the estimator. Experiments on both synthetic
and real data in §6 show effectiveness of the proposed metric.

2 Notations and Preliminaries on t-SVD
First, main notations are listed in Table 1. For any matrix
M ∈ Cd1×d2 , define its Frobenius norm and nuclear norm
as ‖M‖F := (

∑
ij |Mij |2)

1
2 and ‖M‖∗ := ‖σ(M)‖1 respec-

tively, where σ(M) ∈ Rmin{d1,d2} denotes the vector of sin-
gular values of M in non-ascending order.

Table 1: Some notations
Notation Descriptions Notation Descriptions
x scalar v vector
M matrix T tensor
T̃ fft(T , [], 3) ‖T ‖~ tubal nuclear norm
Tijk (i, j, k)th entry of T ‖T ‖F

√∑
ijk T 2

ijk

T (i, j, :) (i, j)th tube of T ‖T ‖∞ maxijk |Tijk|
T (:, :, k) or T (k) kth frontal slice of T 〈A,B〉

∑
ijk AijkBijk

Then, some notions of t-SVD will be defined.

Definition 1 ([Kilmer et al., 2013]). Any T ∈ Rd1×d2×d3 has
tensor singular value decomposition (t-SVD)

T := U ∗ S ∗ V>, (1)

where ∗ denotes the tensor t-product, U ∈ Rd1×d1×d3 and
V ∈ Rd2×d2×d3 are orthogonal, S ∈ Rd1×d2×d3 is f -diagonal,
(·)> denotes the tensor transpose.

Let T̃ := fft(T , [], 3) ∈ Rd1×d2×d3 be the tensor obtained
after conducing DFT along the third mode of T ∈ Rd1×d2×d3 .



Definition 2 ([Kilmer et al., 2013]). The tubal rank of T ∈
Rd1×d2×d3 is defined as the number of non-zero tubes of S in
its t-SVD in Eq. (1), i.e., rtubal(T ) :=

∑
i 1(S(i, i, :) 6= 0).

The multi-rank of T is defined as the vector rm(T ) :=

(r1, · · · , rd3) ∈ Rd3 whose ith element ri = rank(T̃ (i)).
Definition 3 ([Kilmer et al., 2013]). Define the Fourier block-
diagonal matrix of T ∈ Rd1×d2×d3 as follows:

T := blkdiagDFT(T ) =

 T̃
(1)

. . .
T̃ (d3)

 ∈ Cd1d3×d2d3 .

Definition 4 ([Lu et al., 2016]). The tubal nuclear norm
(TNN) of T is defined as the scaled nuclear norm of its Fourier
block-diagonal matrix T,i.e.,

‖T ‖~ :=
1

d3
‖T‖∗ =

1

d3

d3∑
i=1

‖T̃ (i)‖∗.

According to Definition 4, TNN is a rescaled l1-norm of
singular values of the Fourier block-diagonal matrix, and thus
encourages a low multi-rank structure which models low-
rankness in the spectral domain.

3 The Proposed Model For Tensor Recovery
3.1 A New Tensor Low-rank Regularizer
The l1 − αl2 metric was proposed to impose sparser solutions
in sparse signal recovery than the commonly used l1-norm.
Definition 5 ([Lou and Yan, 2018]). With α > 0, define the
l1−αl2 metric of any x ∈ Rd as ‖x‖α,1−2 := ‖x‖1−α‖x‖2.

A 2-D case is plotted in Fig. 1 [Yao et al., 2016], showing
l1−αl2 metric approaches the axes closer for smaller values.

(a) l1-norm (b) l1 − αl2 metric (α = 1)

Figure 1: Level curves of the l1-norm and l1 − αl2 metric (α = 1).

Using l1 − αl2 metric to impose sparsity in singular values,
we define a matrix metric to encourage low-rankness.
Definition 6. The ∗ − αF metric of a matrix M is defined as
the l1 − αl2-metric of the vector of its singular values, i.e.,

‖M‖α,∗−F := ‖σ(M)‖α,1−2 = ‖M‖∗ − α‖M‖F. (2)

The matrix ∗−αF metric is further extended to tensors as a
non-convex surrogate of TNN to impose spectral low-rankess.
Definition 7. The ~−αF metric of a tensor T ∈ Rd1×d2×d3
is defined as the scaled ∗ − αF metric of its Fourier block-
diagonal matrix T, i.e.

‖T ‖α,~−F :=
1

d3
‖T‖α,∗−F = ‖T ‖~ −

α√
d3
‖T ‖F. (3)

3.2 The Proposed Estimator
Suppose one has N noisy observations of L∗ ∈ Rd1×d2×d3 :

yi = 〈L∗,Xi〉+ ξi, i = 1, · · · , N, (4)

where Xi’s are known design tensors and ξi’s are noises.
Let y = (y1, · · · , yN )> and ξ = (ξ1, · · · , ξN )>. Define

the observation operator X(·) := (〈·,X1〉 , · · · , 〈·,XN 〉)> ∈
RN with adjoint operator X∗(z) :=

∑N
i=1 ziXi,∀z ∈ RN .

Then, the model (4) can be rewritten as y = X(L∗) + ξ.
When X is the random Gaussian design, i.e., Xi’s are ran-

dom tensors with i.i.d. standard Gaussian entries, Eq. (4) gives
the tensor compressive sensing model in [Lu et al., 2018].

To recoverL∗, we use the proposed ~−αF metric to impose
spectral low-rankness and define the following estimator:

L̂ ∈ argmin
L
‖L‖α,~−F s.t. ‖y− X(L)‖ ≤ τ, (5)

where constant τ is chosen as a noise level satisfying ‖ξ‖ ≤ τ .

4 Statistical Analysis
The Restricted Isometry Property (RIP) is a powerful analy-
sis tool for sparse and low-rank recovery. As for the t-SVD
framework, [Zhang et al., 2019] defined a tensor variant of
RIP based on the tubal rank. Here, a different tensor RIP based
on the multi-rank is given to analyze the proposed estimator.
Definition 8 (Tensor multi-rank based RIP (tm-RIP)). The
observation operator X : Rd1×d2×d3 → RN is said to satisfy
the tensor multi-rank based RIP with order r and constant δXr ,
if δXr is the smallest δ ∈ (0, 1) such that

(1− δ)‖T ‖2F ≤ ‖X(T )‖22 ≤ (1 + δ)‖T ‖2F, (6)

holds for all T ∈ Rd1×d2×d3 with multi-rank r.
The following theorem shows a random sub-Gaussian de-

sign with sufficient samples satisfies the tm-RIP.
Theorem 1 (tm-RIP for sub-Gaussian design). Fix δ, ε ∈
(0, 1) and suppose the sample size N in Model (4) satisfy

N ≥ Cδ−2 max{(d1 + d2 + 1)‖r‖1, log(ε−1)}, (7)

then with probability at least 1− ε, any sub-Guassian design
X satisfies δXr ≤ δ for all T ∈ Rd1×d2×d3 with multi-rank r.
Remark 1. Note that sub-Gaussian distributions is a larger
class of random distributions, including zero-mean Gaussian
distributions, symmetric Bernoulli distributions and all zero-
mean bounded distributions. Thus, similar to Theorem 1 in
[Zhang et al., 2019], the proposed Theorem 1 characterizes the
behavior of numerous random designs in term of the tm-RIP.

Then, upper bound on the estimation error is established.
Theorem 2 (Stable recovery under tm-RIP). Suppose the true
tensor L∗ in Model (4) has multi-rank r = (r1, · · · , rd3). If
there exists a positive integer s such that

Φr,s := 1− δX2r+s −
√

4‖r‖1 + 2α2d3√
s− α

(δX2r+s + δX2s) > 0, (8)

where s = (s, · · · , s) ∈ Rd3 , then any L̂ in Eq. (5) obeys

‖L̂ − L∗‖F ≤
2
√

1 + δX2r+s

Φr,s
τ. (9)



Remark 2. Theorem 2 indicates that L̂ = L∗ as τ = 0, that
is, Model (5) can guarantee exact recovery in the noiseless
setting when the observation operator X satisfies Eq. (8).
Remark 3. When d3 = 1 and α = 1, the results in Eqs. (8)
and (9) are consistent with those of low-rank matrix recovery
in Theorem 3.8 of [Ma et al., 2017] (when t = 0).

5 Optimization Algorithm
To solve Problem (5), we first propose the proximal operator of
the ~−αF metric and then design an ADMM-based algorithm.

5.1 Proximal Operator of The Proposed Metric
The proximal operator of l1 − αl2 metric is first introduced.
Lemma 1 ([Lou and Yan, 2018]). The proximal operator of
l1 − αl2 metric, i.e., Pα,1−2

λ (x0) := argminx λ‖x‖α,1−2 +
1
2‖x− x0‖2F, can be given in closed form

Pα,1−2
λ (x0) = z + λα

z
‖z‖

, (10)

where z = P
‖·‖1
λ (x0) := sign(x0) � max{|x0| − λ, 0}, and

let Pα,1−2
λ (x0) = 0 if z = 0.

We then extend Lemma 1 to the matrix ∗ − αF metric.
Lemma 2. The proximal operator of ∗ − αF metric at any
point M with SVD M = Udiag(σ(M))VH can be given as

Pα,∗−F
λ (M) = Udiag(s)VH, (11)

where s = Pα,1−2
λ (σ(M)).

We are now ready to establish the closed-form expression
for the proximal operator of the proposed ~− αF metric.
Lemma 3. The proximal operator of ‖·‖α,~−F is given by

Pα,~−F
λ (T0) :=

1

d3
blkdiagDFT−1(Pα,∗−F

λ (T0)). (12)

5.2 An ADMM-based Algorithm
The ADMM framework [Boyd et al., 2011] is applied to solve
the proposed model. Let Bτ := {ε

∣∣‖ε‖2 ≤ τ}. Adding auxil-
iary variables yields an equivalent formulation to Problem (5):

min
L,K,ε

‖L‖α,~−F

s.t. K = L, X(K) + ε = y, ε ∈ Bτ .
(13)

To solve Problem (13), an ADMM-based algorithm is de-
scribed in Algorithm 1. Convergence analysis of Algorithm 1
can be derived based on [Lou and Yan, 2018] for the proximal
operator of l1 − αl2 metric and [Boyd et al., 2011] for the
general ADMM framework.

The computational complexity is analyzed as follows.
For simplicity, let D = d1d2d3. Updating L involves
the proximal operator of ‖·‖α,~−F in Eq. (12) which
costs O

(
D(min{d1, d2} + log d3)

)
; By precomputing (I +

X∗XX∗X)−1 and X∗X which costsO(D3+ND2), the cost of
updating K is O(D2); Updating ε involves computing the pro-
jection into l2-ball Proj‖·‖2τ (·) [Boyd et al., 2011] and X(Kt+1)
which mainly costs O(ND); Updating Z and z costs O(D2).

Supposing the iteration number is T , the overall computa-
tional complexity will be O

(
D3 +TD2 +TD(min{d1, d2}+

log d3)
)
, which is very expensive for large tensors. In some

special cases (like tensor completion) where 〈Xi,L〉 operates
on an element of L, (I + X∗XX∗X)−1 and X∗X can be com-
puted in O(D). Hence, the total complexity of Algorithm 1
will drop to O

(
TD(min{d1, d2}+ log d3)

)
.

Algorithm 1: ADMM for Problem (13)
Input: {Xi}i, y, ρ, ε, Tmax.
1: L0 = K0 = ε0 = Z0 = z0 = 0;
2: for t = 0 to Tmax − 1 do
3: Update Lt+1 = Pα,~−F

1/ρ (Kt+1 + Zt+1/ρ),

and εt+1 = Proj‖·‖2τ (y− X(Kt+1)− zt+1/ρ).
4: Update Kt+1 = (I + X∗XX∗X)−1K0, where

K0 = X∗X
(
X∗(y− εt+1 − zt+1/ρ)

)
+ Lt+1 −Zt+1/ρ.

5: Check stopping criteria: ‖Kt+1 − Lt+1‖∞ ≤ ε,
‖εt+1 + X(Kt+1)− y‖∞ ≤ ε, and
‖T t+1 − T t‖∞ ≤ ε, ∀T ∈ {L,K, ε}.

6: Update Zt+1 = Zt + ρ(Kt+1 − Lt+1) and
zt+1 = zt + ρ

(
εt+1 + X(Kt+1)− y

)
.

7: end for
Output: L̂ = Lt+1.

6 Experiments
We evaluate the effectiveness of the proposed metric by first
conducting tensor compressive sensing and tensor completion
on synthetic data and then carrying out noisy inpainting on
color images. We simply set the constant α = 1 in Model (5)
on synthetic data and α = 0.9 on color images.
Tensor Compressive Sensing. We conduct tensor compres-
sive sensing with random Gaussian design where the design
tensors Xi are formed with i.i.d. standard Gaussian entries.
The true tensors L∗ ∈ Rd1×d2×d3 with tubal rank r∗ are
generated by L∗ = P ∗ Q, where P ∈ Rd1×r∗×d3 and
Q ∈ Rr∗×d2×d3 are i.i.d. sampled from N (0, 1). We con-
sider the tensors with square frontal slices (i.e. d1 = d2 = d)
for simplicity. For tensors L∗ of size 20 × 20 × 5 with
tubal rank r∗ = 1, we consider additive Gaussian noises
N (0, σ2) with noise level σ ∈ {0.02, 0.08, 0.14} along with
the observation ratio N/(d1d2d3) ∈ [0.02 : 0.02 : 0.4].

We compare the proposed metric with TNN [Lu et al., 2018].
The averaged estimation error in 50 runs are shown in log
scale in Fig. 2-(a), showing that the proposed metric is more
accurate than TNN.
Tensor Completion. We also consider tensor completion
from noisy partial observations where the design tensors Xi
are standard tensor bases. For an underlying tensor L∗ with
unit F-norm, we add i.i.d. N (0, σ2) noises with level σ =
0.1/
√
d1d2d3. By choosing d1 = d2 = d ∈ {60, 80, 100},

d3 = 20 and r∗ = dlog1/2 de, we consider 3 different prob-
lem sizes. The estimation error is plotted versus the rescaled
sample size defined as N0 := N/r∗d1d3 log(d1d3 + d2d3)
like [Wang et al., 2018].

The proposed metric is compared with TNN with results
shown in Fig. 2-(b). We can see from Fig. 2-(b) that the



(a) Tensor compressive sensing (b) Tensor completion

Figure 2: Performance evaluation of the proposed metric and TNN
in tensor compressive sensing and tensor completion.

proposed metric achieves higher accuracy than TNN.
Noisy Color Image Inpainting. Noisy color image inpaint-
ing aims to recover a color image from its noisy incomplete
observations. We test the 14 images of size 256×256×3 used
in [Wang et al., 2018]. Given a color imageM∈ Rd1×d2×3,
it is first polluted by additive i.i.d. zero-mean Gaussian noise
with standard deviation σ = c0‖M‖F/

√
3d1d2 and then sam-

pled uniformly with ratio p. Specifically, we consider two
settings (c0, p) ∈ {(0.1, 0.1), (0.1, 0.3)} for a given image.
The proposed model is compared with nine models including
CP-WOPT, TDI, CCD, CTD, HaLRTC, MixNN, SqNN, TNN
and ISTT in Peak Signal to Noise Ratio (PSNR) and Struc-
tural Similarity Index (SSIM) values (see [Wang et al., 2018]
for more descriptions of the competitors). The experimental
results are reported in Fig. 3. As can be seen from Fig. 3, the
proposed model outperforms its competitors in most cases.

(a) (c0, p) = (0.1, 0.1) (b) (c0, p) = (0.1, 0.3)

Figure 3: Performance evaluation of ten tensor completion models
for noisy color image inpainting in PSNR and SSIM values.

7 Conclusion
The l1 − αl2 metric is first generalized to a tensor low-rank
regularizer to exploit spectral low-rankness. Then, we define
a constrained tensor estimator based on the new metric. Sta-
tistically, upper bound on the estimation error is established
through the multi-rank based tensor RIP. Algorithmically, an

ADMM-based algorithm is developed based on the proximal
operator of proposed metric. Effectiveness of the new metric
is demonstrated through experiments.
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